Hemispheric-scale comparison of monthly passive microwave snow water equivalent products
نویسندگان
چکیده
The snow water equivalent (SWE) products from passive microwave remote sensing are useful in global climate change studies due to the long-time and all-weather imaging capabilities of passive microwave radiometry at the hemisphere scale. Northern Hemisphere SWE products, including products from the National Snow and Ice Data Center (NSIDC) and GlobSnow from the European Space Agency (ESA), have been providing long-time series information since 1979. However, the different algorithms used to produce the NSIDC and GlobSnow products lead to discrepancies in the data. To determine which product might be superior, this paper assesses their hemisphere-scale quality for the time period 1979−2010. By comparing the data with historical snow depth measurements obtained from 7388 meteorological stations in the Northern Hemisphere, the accuracies of the different SWE products are analyzed for the period and for different snow types. The results show that for SWEs above 30 mm but below 200 mm, GlobSnow estimates maintain a better linear relation with the ground measurements. NSIDC products are more influenced by microwave “saturation,” producing obvious underestimations for SWEs over 120 mm. However, for shallow snow (SWE less than 30 mm), the slight overestimate produced by GlobSnow is more obvious than that of the other NSIDC products. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.8.084688]
منابع مشابه
Identifying and Mapping Systematic Errors in Passive Microwave Snow Water Equivalent Observations
Understanding remote sensing retrieval errors is important for correct interpretation of observations, and successful assimilation of observations into numerical models. Passive microwave sensors onboard satellites can provide global snow water equivalent (SWE) observations day or night and under cloudy conditions. However, there are errors associated with the passive microwave measurements, wh...
متن کاملFactors affecting remotely sensed snow water equivalent uncertainty
State-of-the-art passive microwave remote sensing-based snow water equivalent (SWE) algorithms correct for factors believed to most significantly affect retrieved SWE bias and uncertainty. For example, a recently developed semi-empirical SWE retrieval algorithm accounts for systematic and random error caused by forest cover and snow morphology (crystal size — a function of location and time of ...
متن کاملAn investigation on the feasibility of applying MODIS snow cover products in cloudy weather by the employment of its integration with microwave images
Variation of snow cover area (SCA) in small to large scale catchment can be studied using MODIS snow products on daily to montly time step since the year 2000. However, one of the major problems in applying the MODIS snow products is cloud obscuration which limits the utilization of these products. In the current study, variation of SCA was investigated in Karoun basin, western part of Iran, us...
متن کاملIndices for estimating fractional snow cover in the western Tibetan Plateau
Snow cover in the Tibetan Plateau is highly variable in space and time and plays a key role in ecological processes of this cold-desert ecosystem. Resolution of passive microwave data is too low for regional-scale estimates of snow cover on the Tibetan Plateau, requiring an alternate data source. Optically derived snow indices allow for more accurate quantification of snow cover using higherres...
متن کاملPUBLISHED BY THE AMERICAN GEOPHYSICAL UNION Coupling the snow thermodynamic model SNOWPACK with the microwave emission model of layered snowpacks for subarctic and arctic snow water equivalent retrievals
[1] Satellite-passive microwave remote sensing has been extensively used to estimate snow water equivalent (SWE) in northern regions. Although passive microwave sensors operate independent of solar illumination and the lower frequencies are independent of atmospheric conditions, the coarse spatial resolution introduces uncertainties to SWE retrievals due to the surface heterogeneity within indi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017